f(x)=x2+x−2⇒sumofroots=α+β=−1⇒productofroots=α−β=−2....(1)∴valueof1α−1β=β−ααβ=−(α−β)αβ....(2)⇒α−β=√Da=√b2−4aca=√1+4×2×11=3α−β=3....(3)puttingthevalueofαβandα−βinequation(2)⇒1α−1β=−(3)−2=32
If α and β are the zeros of the polynomial f(x)=x2+x−2, find the value of (1α−1β).