Concept : 1 Mark
Application : 1 Mark
Calculation : 2 Marks
Since α and β are the zeros of the quadratic polynomial f(x)=ax2+bx+c
∴α+β=−ba=5 and αβ=ca=6
We have α+β=5
Hence (α+β)2=25
α2+β2+2αβ=25
α2+β2=25−2αβ
α2+β2=25−2(6) ( ∵αβ=6) = 13
We have,
α2β2+β2α2=α4+β4α2β2
α2β2+β2α2=α2β2+β2α2=(α2+β2)2−2α2β2α2β2
=132−(2×(62))62
=9736.
∴α2β2+β2α2=9736.