Concept : 1 Mark
Application : 1 Mark
Calculation : 1 Mark
Since α and β are the zeros of the quadratic polynomial
f(x)=x2+6x+2
∴α+β=−ba=−61=−6 and αβ=ca=21=2
We have
α2β+β2α=α3+β3(αβ)
=(α+β)3−3αβ(α+β)αβ
=(−ba)3−3(ca)(−ba)ca
=(−6)3−3(2)(−6)2
= =−1802
⇒α2β+β2α=−90