Consider the given polynomial
f(x)=x2−px+q
α and βare the zeros of given polynomial
We know that,
Sumofzeros=−cofficentofxcofficentofx2
α+β=−(−p)1
α+β=p
Productofzeros=constantcofficentofx2
α×β=q1
α×β=q
Then,
Part (1):-
α2+β2=(α+β)2−2αβ
α2+β2=p2−2q
Part (2):-
1α+1β=α+βαβ
=pq
Hence, this is the answer.