Here, a=1,b=−5 and c=k
We know by rule of sum and product of roots that,
α+β=−ba=−−51=5
αβ=ca=k7=k
Given that α−β=1
Squaring both sides, we get,
(α−β)2=1
⇒α2+β2−2αβ=1
⇒(α2+β2+2αβ)−4αβ=1
⇒(α+β)2−4αβ=1
⇒(5)2−4k=1
∴k=6