6cosθ+8sinθ=9
6cosθ=9−8sinθ
squaring.
36cos2θ=81+64sin2θ−144sinθ
36(1−sin2θ)=81−144sinθ+64sin2θ
100sin2θ−144sinθ+45=0
α&βarediffValuesofθ
thenproductofroots=sinαsinβ=45100
920
Again8sinθ=9−6cosθ
64sin2θ=81+36cos2θ−108cosθ
100cos2θ−108cosθ+17=0
productofroots=cosαcosβ=17100
Nowcosαcosβ−sinαsinβ=17100−45100
cos(α+β)=−725
sin(α+β)=2425