If α and β are two distinct complex numbers satisfying |α|2β−|β2|α=α−β, then (Here, arg(z) denotes the principal argument with −π<arg(z)≤π)
A
arg(αβ)=π
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
α¯¯¯β=β¯¯¯¯α
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
α¯¯¯β=1
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
|α|=|β|
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct options are Bα¯¯¯β=β¯¯¯¯α Cα¯¯¯β=1 |α|2β−|β2|α=α−β⋯(1) ⇒|α|2β+β=α+|β|2α ⇒β(1+|α|2)=α(1+|β|2) ⇒αβ=1+|α|21+|β|2 ⇒αβ is positive real. ⇒arg(αβ)=0
Also, αβ=¯¯¯¯α¯¯¯β ⇒α¯¯¯β=β¯¯¯¯α
Again, from (1),α¯¯¯¯αβ−β¯¯¯βα=α−β ⇒α(¯¯¯¯αβ−1)=β(α¯¯¯β−1) But ¯¯¯¯αβ=α¯¯¯β Hence, (¯¯¯¯αβ−1)(α−β)=0 α≠β⇒¯¯¯¯αβ=1=α¯¯¯β