If α and β satisfies the equations 5sin2β=3sin2α and 3tanα=tanβ simultaneously, where 0<α<π,0<β<π,α,β≠π2, then the possible value(s) of tanα+tanβ is/are
A
4
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
−4
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
−2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is B−4 5sin2β=3sin2α 3tanα=tanβ⋯(1)
5sin2β=3sin2α ⇒52tanβ1+tan2β=32tanα1+tan2α
Using equation (1), ⇒53tanα1+9tan2α=3tanα1+tan2α⇒51+9tan2α=11+tan2α(∵tanα≠0) ⇒5+5tan2α=1+9tan2α ⇒tan2α=1 ⇒tanα=±1