If α∈0,π2, then (x2+x)+tan2α(x2+x) is always greater than or equal to
2tanα
1
2
sec2α
Explanation for the correct option:
Step 1. Find the value of (x2+x)+tan2α(x2+x):
Given that α∈0,π2
Thus, tanα is positive.
Let (x2+x) and tan2α(x2+x) be the two terms.
Step 2. As we know AM≥GM
⇒ (x2+x)+tan2α(x2+x)2≥(x2+x)tan2α/(x2+x)
⇒ (x2+x)+tan2α(x2+x)≥2(tan2α)
⇒(x2+x)+tan2α(x2+x)≥2tanα
Hence, Option ‘A’ is Correct.