If ɑ,β≠0,f(n)=ɑn+βn and 31+f(1)1+f(2)1+f(1)1+f(2)1+f(3)1+f(2)+1+f(3)1+f(3)1+f(4) =k(1-ɑ)2(1-β)2(ɑ-β)2, then k=
αβ
1αβ
1
-1
Explanation for the correct option:
Step 1. Find the value of k:
Given, f(n)=ɑn+βn
⇒ f(1)=α+β,f(2)=α2+β2,f(3)=α3+β3,f(4)=α4+β4
Let △=31+f(1)1+f(2)1+f(1)1+f(2)1+f(3)1+f(2)+1+f(3)1+f(3)1+f(4)
Step 2. Put the values of f(1),f(2),f(3),f(4) in △, we get
△=31+α+β1+α2+β21+α+β1+α2+β21+α3+β31+α2+β21+α3+β31+α4+β4
△=1111αα21ββ21111αα21ββ2=1111αα21ββ22
∴△=1-α21-β2α-β2
Step 3. According to the question,△=k1-α21-β2α-β2
⇒ 1-α21-β2α-β2=k1-α21-β2α-β2
By Comparing L.H.S and R.H.S, we get
k=1
Hence, Option ‘C’ is Correct.