If α+β=90∘, show that the maximum value of cosα cosβis12
Let y=cosα cosβ then,
y=12(2cosα cosβ)=12[cos(α+β)+cos(α−β)]=12[cos90∘+cos(α−β)][∵α+β=90∘]=12[0+cos(α−β)]=12cos(α−β)⇒y=12cos(α−β)
Now,
−1≤cos(α−β)≤1⇒y=−12≤12cos(α−β)≤12⇒−12≤12cos(α−β)≤12⇒−12≤y≤12⇒−12≤cosα cosβ≤12
Hence, the maximum values of cosα cosβ is 12