wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If α+β=90, show that the maximum value of cosα cosβis12

Open in App
Solution

Let y=cosα cosβ then,
y=12(2cosα cosβ)=12[cos(α+β)+cos(αβ)]=12[cos90+cos(αβ)][α+β=90]=12[0+cos(αβ)]=12cos(αβ)y=12cos(αβ)

Now,
1cos(αβ)1y=1212cos(αβ)121212cos(αβ)1212y1212cosα cosβ12
Hence, the maximum values of cosα cosβ is 12


flag
Suggest Corrections
thumbs-up
27
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Pythagorean Identities
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon