The correct options are
A cos2α+cos2β+cos2γ=2
B sin2α+sin2β+sin2γ=1
C cos2α+cos2β+cos2γ=1
Given, 2tan2αtan2βtan2γ+tan2αtan2β+tan2βtan2γ+tan2γtan2α=1
tan2αtan2β+tan2βtan2γ+tan2γtan2α=1−2tan2αtan2βtan2γ ...(1)
Now,
sin2γ+sin2β+sin2α=tan2γ1+tan2γ+tan2β1+tan2β+tan2α1+tan2α=tan2γ(1+tan2β)(1+tan2α)+tan2β(1+tan2γ)(1+tan2α)+tan2α(1+tan2β)(1+tan2γ)(1+tan2γ)(1+tan2β)(1+tan2α)
Using (1), we get
sin2γ+sin2β+sin2α=∑tan2α+2∑tan2βtan2γ+3tan2αtan2βtan2γ1+∑tan2α+1−tan2αtan2βtan2γ=2+∑tan2αtan2βtan2γ2+∑tan2α−tan2αtan2βtan2γ=1
⇒cos2α+cos2β+cos2γ=2⇒cos2α+cos2β+cos2γ=1
Now if cos(α+β)cos(α−β)−cos2γ is true
cos2α−sin2β=−cos2γ⇒cos2α+cos2β+cos2γ=1