If α, β and γ are in A.P., sinα−sinγcosγ−cosα equals to
cotβ
sinα−sinγcosγ−cosα = 2sinα−γ2cosα+γ22sinα−γ2sinα+γ2
= cot(α+γ2)
Since α, β and γ are in A.P., so β=α+γ2
Thus, substituting back we get
sinα−sinγcosγ−cosα=cotβ.