If α,β and γ are the roots of the equation x3 + 2x2 + 3x + 1 = 0. Find the constant term of the equation whose roots are 1β3 + 1γ3 - 1α3, 1γ3 + 1α3 - 1β3 , 1α3 + 1β3 - 1γ3.
x3 + 2x2 + 3x + 1 = 0
x3 + 1 = -(2 x2 + 3x) ...................(1)
Cubing on both sides
(x3+1)3 = - (2x2+3x)3
x9 + 3x6 + 3x3 + 1 = -[8x6 +27x3 + 18x3(2x2 + 3x))]
x3 + 1 = -(2x2 + 3x from equation 1).
x9 + 3x6 + 3x3 + 1 = -[8x6 + 27x3 + 18x3(-x3 -1)]
Putting x3 = y in this equation
y3 + 3y2 +3y + 1 = -[8y2 +27y + 18y (- y - 1)]
y3 - 7y2 +12y + 1 = 0 {its root α3, β3, γ3}_____________(2)
Changing y to 1y in equation 2
1y3 - 7y2 + 12y + 1 = 0
y3 + 12y2 - 7y + 1 = 0 ____________(3)
If roots are {1α3, 1β3, 1γ3}
Let 1α3 = a, 1β3 = b, 1γ3 = c
a + b + c = -12
1β3 + 1γ3 - 1α3 = (a + b + c) - 2a = -12 - 2y
y = 12+p2
Putting the value of y in equation 3
-(12+p)38 + 12 (12+p)24 + 7 (12+p)2 + 1 = 0
(12+p)3 - 24(12+p)2 - 28(12 + p) - 8 = 0
p3 + 12p2 - 172p - 2072 = 0
Change the variable x in place of p
x3 + 12x2 - 172x - 2072
Constant term = -2072