If α,β and γ are the roots of the equation x3+2x2+3x+1=0. Find the constant term of the equation whose roots are 1β3+1γ3−1α3,1γ3+1α3−1β3,1α3+1β3−1γ3.
x3+2x2+3x+1=0
x3+1=−2x2+3x . . . (1)
Cubing on both sides
(x3+1)3=−(2x2+3x)3
⇒x9+3x6+3x3+1=−[8x6+27x3+18x3(2x2+3x)]
⇒x3+1=−2x2+3x from equation (1).
⇒x9+3x6+3x3+1=−[8x6+27x3+18x3(−x3−1)]
Putting x3=y in this equation
⇒y3+3y2+3y+1=−[8y2+27y+18y(−y−1)]
y3−7y2+12y+1=0 (its root α3,β3,γ3) . . . (2)
Changing y to 1y in equation 2
⇒1y3−7y2+12y+1=0
⇒y3+12y2−7y+1=0 . . . (3)
If roots are 1α3,1β3,1γ3.
Let 1α3=a,1β3=b,1γ3=c
⇒a+b+c=−12
⇒1β3+1γ3−1α3=(a+b+c)−2a=−12−2y
⇒y=12+p2
Putting the value of y in equation 3
⇒−(12+p)38+12(12+p)24+7(12+p)2+1=0
⇒(12+p)3−24(12+p)2−28(12+p)−8=0
⇒p3+12p2−172p−2072=0
Change the variable x in place of p,
⇒x3+12x2−172x−2072
Constant term =−2072