If α,β and γ are the roots of the equation x3 + 3x2 + 5x - 6 = 0, find the value of (α−1βγ)(β−1γα)
(γ−1αγ)(1α+1β+1γ)−1
If α,β,γ are roots
We know,
α+β+γ=−ba=−3,αβ+βγ+γα=5
αβγ=−da=6
So,
(α−1βγ)(β−1γα)(γ−1αβ)(1α+1β+1γ)−1
=(α−1βx)(β−γγa)(γ−1αβ)(αβγαβ+βγ+γα)=(αβγ−1)(αβγ−1)(αβγ−1)α2β2γ2×αβγ(αβ+βγ+γα)
=(αβγ−1)3αβγ(αβ+βγ+γα)=536×5=256