The correct option is D 3ω2
Let w be the cube root of unity.
∴w3=1&1+w+w2=0, where w=−1+i√32 w2=−1−i√32
x3−3x2+3x+7=0
(x−1)3+8=0
⇒x=1+2(−1)13=1+2(cosπ+isinπ)13
⇒x=1+2(cos(2kπ+π3)+isin(2kπ+π3)) ...{ De Moivre's Theorem }
where, k=0,1,2.
For k=0,
⇒α=1+2(cos(π3)+isin(π3))=1+2(1+i√32)=1−2w2
For k=1,
⇒β=1+2(cosπ+isinπ)=1−2=−1
For k=2,
⇒γ=1+2(cos(5π3)+isin(5π3))=1+2(1−i√32)=1−2w
z=α−1β−1+β−1γ−1+γ−1α−1=−2w2−2+−2−2w+−2w−2w2
⇒z=3w2
Hence, option D is correct.