If α,β are acute angles such that (α+β) and (α−β) satisfy the equation tan2θ−4tanθ+1=0, then:
tan(α+β)+tan(α−β)=4
and tan(α+β).tan(α−β)=1
Hence tan(α+β)=cot(α−β)=tan{π2−(α−β)}
∴α=π4
tan(π4+β)+tan(π4−β)=4
⇒1+tanβ1−tanβ+1−tanβ1+tanβ=4⇒1+tan2β1−tan2β=2⇒tan2β=13
⇒tanβ=1√3⇒β=π6