Relation between Roots and Coefficients for Quadratic
If α, β are d...
Question
If α,β are different values of x satisfying a cos x + b sin x = c then tan(α+β2)=
A
a + b
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
a – b
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is D acosx+bsinx=c⇒a[1−tan2x/21+tan2x/2]+b[2tanx/21+tan2x/2]=c ⇒a(1−t21+t2)+(2t1+t2)=c,wheret=tanx2 ⇒a(1−t2)+2bt=c(1+t2)⇒(c+a)t2−2bt+(c−a)=0....(1) Since α,β are the values of x, we get tanα2,tanβ2 are the roots of (1). ∴tanα2+tanβ2=2bc+a,tanα2,tanβ2=c−ac+a tan(α+β2)=tanα/2+tanβ/21−tan(α/2)tan(β/2)=(2b)/(c+a)1−(c−a)/(c+a)=2bc+a−c+a=2b2a=ba