The correct option is
C baacosx+bsinx=c
⇒acosx=c−bsinx
squaring both sides we get
⇒a2cos2x=(c−bsinx)2
⇒a2cos2x=c2+b2sin2x−2bcsinx
⇒a2(1−sin2x)=c2+b2sin2x−2bcsinx
⇒a2−a2sin2x=c2+b2sin2x−2bcsinx
⇒−a2sin2x−b2sin2x+2bcsinx+(a2−c2)=0
⇒−(a2+b2)sin2x+2bcsinx+(a2−c2)=0
⇒(a2+b2)sin2x−2bcsinx+(c2−a2)=0
Let sinα and sinβ be the roots of the equation then
Sum of the roots =sinα+sinβ=2bca2+b2 .....(1)
acosx+bsinx=c
⇒bsinx=c−acosx
squaring both sides we get
⇒b2sin2x=(c−acosx)2
⇒b2sin2x=c2+a2cos2x−2cacosx
⇒b2(1−cos2x)=c2+a2cos2x−2cacosx
⇒b2−b2cos2x=c2+a2cos2x−2cacosx
⇒−b2cos2x−a2cos2x+2accosx+(b2−c2)=0⇒−(a2+b2)sin2x+2accosx+(b2−c2)=0
⇒(a2+b2)cos2x−2accosx+(c2−b2)=0
Let cosα and cosβ be the roots of the equation then
Sum of the roots =cosα+cosβ=2aca2+b2 .....(2)
Eqn(1)÷Eqn(2) we get
sinα+sinβcosα+cosβ=2bca2+b22aca2+b2
2sin(α+β2)cos(α−β2)2cos(α+β2)cos(α−β2)=ba
∴tan(α+β2)=ba