wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If α,β are differnt values of x satisfying acosx+bsinx=c, then tan(α+β2)=

A
a+b
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
ab
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
ba
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
ab
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is C ba
acosx+bsinx=c
acosx=cbsinx
squaring both sides we get
a2cos2x=(cbsinx)2
a2cos2x=c2+b2sin2x2bcsinx
a2(1sin2x)=c2+b2sin2x2bcsinx
a2a2sin2x=c2+b2sin2x2bcsinx
a2sin2xb2sin2x+2bcsinx+(a2c2)=0
(a2+b2)sin2x+2bcsinx+(a2c2)=0
(a2+b2)sin2x2bcsinx+(c2a2)=0
Let sinα and sinβ be the roots of the equation then
Sum of the roots =sinα+sinβ=2bca2+b2 .....(1)
acosx+bsinx=c
bsinx=cacosx
squaring both sides we get
b2sin2x=(cacosx)2
b2sin2x=c2+a2cos2x2cacosx
b2(1cos2x)=c2+a2cos2x2cacosx
b2b2cos2x=c2+a2cos2x2cacosx
b2cos2xa2cos2x+2accosx+(b2c2)=0(a2+b2)sin2x+2accosx+(b2c2)=0
(a2+b2)cos2x2accosx+(c2b2)=0
Let cosα and cosβ be the roots of the equation then
Sum of the roots =cosα+cosβ=2aca2+b2 .....(2)
Eqn(1)÷Eqn(2) we get
sinα+sinβcosα+cosβ=2bca2+b22aca2+b2
2sin(α+β2)cos(αβ2)2cos(α+β2)cos(αβ2)=ba
tan(α+β2)=ba


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Basic Theorems in Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon