The correct option is A λ3
x3−1=0∴x=1,ω,ω2
Here, α=ω,β=ω2∣∣
∣
∣∣λ+1ωω2ωλ+ω21ω21λ+ω∣∣
∣
∣∣
Applying C1→C1+C2+C3, then
∣∣
∣
∣∣λωω2λλ+ω21λ1λ+ω∣∣
∣
∣∣
Applying R−2→R2−R1 and R3→R3−R1, then we get
∣∣
∣
∣∣λωω20λ+ω2−ω1−ω201−ωλ+ω−ω2∣∣
∣
∣∣=λ((λ+ω2−ω)(λ+ω−ω2)−(1−ω)(1−ω2))=λ(λ2)=λ3