We have,
2x2−35x+2=0
On comparing that,
Ax2+Bx+C=0
Then,
A=2,B=−35,C=2
Then,
Using quadratic formula,
x=−B±√B2−4AC2A
Then,
x=35±√352−4×2×22×2
=35±√1225−164
=35±√12094
=35±34.774
Now,
α=35+34.772
α=69.772=34.885
α=34.885
β=35−34.772
β=0.232
β=0.115
Then,
Calculate
(2α−35)2+(2β−35)2
⇒(2×34.885−35)2+(2×0.115−35)2
⇒1208.9529+1208.9529
⇒2417.9058
Hence, this is the
answer.