If α,β are roots of the equation 6x2+11x+3=0 then
Both cot−1α and cot−1β are real
6x2+11x+3=0⇒x=−13,−32
−1<−13<1
−32<−1
∴cos−1(13) exists but cos−1(−32) does not;
cosec−1(−32) exists but cosec−1(−13) does not;
cot−1(−13) and cot−1(−32) exist