If α,β are roots of the equation ax2+bx+c=0, where a,b,c are distinct real values, then (1+α+α2)(1+β+β2) is
If a, b, c are in G.P., prove that:
(i) a(b2+c2)=c(a2+b2)
(ii) a2b2c2(1a3+1b3+1c3)=a3+b3+c3
(iii) (a+b+c)2a2+b2+c2=a+b+ca−b+c
(iv) 1a2−b2+1b2=1b2−c2
(v) (a+2b+2c)(a−2b+2c)=a2+4c2.