If α,β are roots of the equation x2+5(√2)x+10=0,α>β and Pn=αn−βn for each positive integer n, then the value of (P17P20+5√2P17P19P18P19+5√2P218) is equal to
Open in App
Solution
αn−2(α2+5√2α+10)=0…(1) βn−2(β2+5√2β+10)=0…(2)
From (2)−(1) Pn+5√2Pn−1=−10Pn−2
Now, P17(P20+5√2P19)P18(P19+5√2P18)=P17.(−10P18)P18.(−10P17)=1