If α,β are solutions of sin2x+asinx+b=0 and cos2x+ccosx+d=0 then sin(α+β)equals
sinα+sinβ=−a cosα+cosβ=−c a2+c2=1+1+2(sinαsinβ+cosαcosβ)=2+2cos(α−β) ac=sinαcosα+sinαcosβ+sinβcosα+sinβcosβ=2sin(α+β)[1+cos(α−β)] ∴2aca2+c2=sin(α+β)
If α and β are solutions of sin2x + a sin x + b = 0 as well as that of cos2x + c cos x + d = 0, then sin(α + β ) is equal to
If a, b, c, d are in G.p., prove that :
(i) (a2+b2),(b2+c2),(c2+d)2 are in G.P.
(ii) (a2−b2),(b2−c2),(c2−d)2 are in G.P.
(iii) 1a2+b2,1b2+c2,1c2+d2 are in G.P.
(iv) (a2+b2+c2),(ab+bc+cd),(b2+c2+d2)