The correct option is D 2(b2−4c)
Given: α,β are roots of x2+bx+c=0
∴x2+bx+c=(x−α)(x−β) ⋯(i)
Also β2+bβ+c=0 ⋯(ii)
Now, L=limx→βe2(x2+bx+c)−1−2(x2+bx+c)(x−β)2×(x−α)2×(x−α)2
L=limx→βe2(x2+bx+c)−1−2(x2+bx+c)(x2+bx+c)2×limx→β(x−α)2(From (i))
Let x2+bx+c=t
Then, x→β⇒t→0 (From (ii))
∴L=limt→0e2t−1−2tt2×(β−α)2
Now, using expansion, we have:
L=limt→0(1+2t+(2t)22!+(2t)33!+…)−1−2tt2×(α−β)2
⇒L=2(α−β)2
⇒L=2[(α+β)2−4αβ]
⇒L=2[(−b)2−4c]
∴L=2(b2−4c)