The correct option is D sinα+sinβsin(α+β)
Let a,b are the length of semi-major axis and semi-minor axis respectively, then (acosα,bsinα),(acosβ,bsinβ),(ae,0) are collinear.
⇒b(sinβ−sinα)a(cosβ−cosα)=bsinα−0acosα−ae⇒(cosα−e)(sinβ−sinα)=sinα(cosβ−cosα)⇒e=cosα(sinβ−sinα)−sinα(cosβ−cosα)sinβ−sinα⇒e=sin(α−β)sinα−sinβ⇒e=sin(α−β)(sinα+sinβ)sin2α−sin2β∴e=sinα+sinβsin(α+β)[∵sin(A+B)sin(A−B)=sin2A−sin2B]