If α,β are the roots of ax2+2bx+c=0 and a+δ,β+δ are the roots of Ax2+2Bx+C=0 then b2–acB2−AC is
(aA)2
ax2+2bx+c=0 have roots α & β
∴α+β=−2ba, αβ=ca
(α−β)2=(α+β)2−4αβ
⇒(α−β)2=4b2a2−4ca=4a2(b2−ac)
∵Ax2+2Bx+C=0 have roots α+δ & β+δ
α+δ+β+δ=−2BA
(α+δ)(β+δ)=CA
[(α+δ)−(β+δ)]2=[(α+δ)+(β+δ)]2−4(α+δ)(β+δ)
⇒(α−β)2=4B2A2−4CA=4A2(B2−AC)
⇒4a2(b2−ac)4A2(B2−AC)
⇒b2−acB2−AC=a2A2=(aA)2