If α,β are the roots of ax2+bx+c=0 and α+k, β+k are the roots of px2+qx+r=0.
Then b2−4acq2−4pr is equal to
(ap)2
Given: α,β are the roots of ax2+bx+c=0 and α+k, β+k are the roots of px2+qx+r=0.
Absolute difference of both the roots will be same,
|α−β|=|α+k−β−k|⇒[(α+k+β+k)2−4(α+k)(β+k)]=(α+β)2−4αβ⇒q2p2−4rp=b2a2−4ca⇒q2−4prp2=b2−4aca2⇒b2−4acq2−4pr=(ap)2