We have,
ax2+bx+c=0 ……. (1)
Since, α,β are root of above equation.
α+β=−ba
aα+aβ=−b
aα+b=−aβ …….. (2)
αβ=ca ……. (3)
Since,
1(aα+b)2+1(aβ+b)2
From equation (2),
⇒1(−aβ)2+1(−aα)2
⇒1a2β2+1a2α2
⇒1a2(α2+β2α2β2)
⇒1a2((α+β)2−2αβα2β2)
⇒1a2⎛⎜ ⎜ ⎜ ⎜ ⎜⎝(−ba)2−2cac2a2⎞⎟ ⎟ ⎟ ⎟ ⎟⎠
⇒b2a2−2cac2
⇒b2−2aca2c2
Hence, this is the answer.