1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XI
Mathematics
Inequalities Involving Modulus Function
If α , β ar...
Question
If
α
,
β
are the roots of
a
x
2
+
b
x
+
c
=
0
, then find the equation whose roots are
A)
1
a
2
,
1
β
2
B)
1
a
α
+
β
,
1
a
β
+
b
C)
α
+
1
β
,
β
+
1
α
Open in App
Solution
a
x
2
+
b
x
+
c
=
0
α
+
β
=
−
b
a
α
β
=
c
a
(i) equation whose roots are
1
α
2
,
1
β
2
Sum of roots
=
1
α
2
+
1
β
2
=
α
2
+
β
2
(
α
β
)
2
=
(
α
+
β
)
2
−
2
α
β
)
(
α
β
)
2
=
b
2
a
2
−
2
c
a
c
2
a
2
=
b
2
−
2
a
c
c
2
\
product
=
1
α
2
1
β
2
=
a
2
c
2
∴
equation is
c
2
x
2
+
(
2
a
c
−
b
2
)
x
+
a
2
=
0
(ii)
1
a
α
+
β
,
1
a
β
+
α
Sum
⇒
a
β
+
a
α
+
β
a
2
α
β
+
α
2
a
+
a
β
2
+
α
β
⇒
(
α
+
β
)
(
1
+
a
)
(
a
2
+
1
)
(
α
β
)
+
a
(
α
β
)
⇒
(
1
+
a
)
(
b
a
)
(
a
2
+
1
)
c
a
+
a
(
b
2
a
2
−
2
c
a
)
⇒
−
(
1
+
a
)
b
(
a
2
+
1
)
c
+
a
(
b
2
−
2
a
c
)
⇒
−
(
1
+
a
)
b
c
(
1
+
a
2
)
+
a
b
2
Product
a
c
(
1
−
a
2
)
+
a
b
2
∴
(
c
(
1
−
a
2
)
+
a
b
2
)
x
2
+
(
1
+
a
)
b
x
+
a
=
0
(iii)
α
+
1
β
,
β
+
1
α
Sum
⇒
α
β
+
1
β
+
α
β
+
1
α
⇒
α
2
β
(
α
β
)
+
(
α
2
+
β
α
β
⇒
−
b
a
+
−
b
c
−
b
[
a
+
c
a
c
]
Product
(
α
β
+
1
)
2
α
β
⇒
(
c
+
a
)
2
a
2
c
a
⇒
(
α
+
β
)
+
α
β
α
β
[
a
c
a
+
c
]
x
2
+
b
x
+
(
a
+
c
)
=
0
Suggest Corrections
0
Similar questions
Q.
If
α
,
β
are the roots of the equation
a
x
2
+
b
x
+
c
=
0
, then
α
a
β
+
b
+
β
a
α
+
b
=
Q.
If
α
,
β
are the roots of quadratic equation
a
x
2
+
b
x
+
c
=
0
, then the quadratic equation whose roots are
1
a
α
+
b
,
1
a
β
+
b
, is
Q.
If
α
,
β
are the roots of
a
x
2
+
b
x
+
c
=
0
, find the value of
i)
(
1
+
α
)
(
1
+
β
)
ii)
α
3
β
+
α
β
3
iii)
1
α
+
1
β
iv)
1
a
α
+
b
+
1
a
β
+
b
Q.
If α, β
are the roots of the equation
a
x
2
+
b
x
+
c
=
0
, then
α
a
β
+
b
+
β
a
α
+
b
=