wiz-icon
MyQuestionIcon
MyQuestionIcon
2
You visited us 2 times! Enjoying our articles? Unlock Full Access!
Question

If α,β are the roots of ax2+bx+c=0, then find the equation whose roots are
A) 1a2,1β2
B) 1aα+β,1aβ+b
C) α+1β,β+1α

Open in App
Solution

ax2+bx+c=0
α+β=ba αβ=ca
(i) equation whose roots are 1α2,1β2
Sum of roots =1α2+1β2=α2+β2(αβ)2=(α+β)22αβ)(αβ)2

=b2a22cac2a2=b22acc2\
product =1α21β2=a2c2
equation is c2x2+(2acb2)x+a2=0

(ii) 1aα+β,1aβ+α

Sum aβ+aα+βa2αβ+α2a+aβ2+αβ

(α+β)(1+a)(a2+1)(αβ)+a(αβ)

(1+a)(ba)(a2+1)ca+a(b2a22ca)

(1+a)b(a2+1)c+a(b22ac)

(1+a)bc(1+a2)+ab2

Product ac(1a2)+ab2

(c(1a2)+ab2)x2+(1+a)bx+a=0

(iii) α+1β,β+1α

Sum αβ+1β+αβ+1α
α2β(αβ)+(α2+βαβ
ba+bc
b[a+cac]

Product (αβ+1)2αβ
(c+a)2a2ca
(α+β)+αβαβ
[aca+c]x2+bx+(a+c)=0

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Modulus
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon