If α,β are the roots of equation ax2+bx+c=0, then logea+2logex−1x(α+β)−12x2(α2+β2)−13x2(α3+β3).... is equal to
A
logea
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
logeβ
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
loge(ax2+bx+c)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
logeβα
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Cloge(ax2+bx+c) Since, α,β are the roots of ax2+bx+c=0.
Also, we need a series in the descending powers of x Therefore, ax2+bx+c=a(x−α)(x−β)=ax2(1−αx)(1−βx) Let E=loge(ax2+bx+c) ⇒E=logea+2logex+loge(1−αx)+loge(1−βx) ⇒E=logea+2logex−(αx+12.α2x2+13.α3x3)−(βx+12.β2x2+13.β3x3) ⇒E=logea+2logex−1x(α+β)−12x2(α2+β2)−13x3(α3+β3)