If α,β are the roots of the equation 8x2−3x+27=0, then the value of (α2β)13+(β2α)13 is
α+β=38,αβ=278∴(α2β)13+(β2α)13=(α3)13+(β3)13(αβ)13=α+β(αβ)13=3/8(27/8)13=3/83/2=14.
If α,β are the roots of the equation 8x2−3x+27=0 then the value of (α2β)13+(β2α)13 is.
If α ,β are the roots of the equation x2−px+q=0 and α > 0,β >0 , then the value of α14+β14 is (p+6√q+4q14√p+2√q)k , where k is equal to