The correct option is D S5=−ba5(b2−2ac)2+(b2−ac)bca4
We know that,
α,β are the roots of the equation ax2+bx+c=0,a≠0,
aα2+bα+c=0
aβ2+bβ+c=0
α+β=−ba, αβ=ca
Now,
Sn=αn+βn
aSn+1+bSn+cSn−1
=a(αn+1+βn+1)+b(αn+βn)+c(αn−1+βn−1)
=αn−1(aα2+bα+c)+βn−1(aβ2+bβ+c)
=αn−1×0+βn−1×0
=0
∴Sn+1=−baSn−caSn−1 ...(1)
Putting n=4 in the above equation, we get
S5=−baS4−caS3
Now,
S4=α4+β4 =((α+β)2−2αβ)2−2α2β2 =(b2a2−2ca)2−2c2a2 =(b2−2ac)2a4−2c2a2
S3=α3+β3 =(α+β)3−3αβ(α+β) =−b3a3+3bca2
Putting in the expression of S5,
S5=−ba5(b2−2ac)2+2bc2a3+b3ca4−3bc2a3⇒S5=−ba5(b2−2ac)2+b3ca4−bc2a3
∴S5=−ba5(b2−2ac)2+(b2−ac)bca4