If α,β are the roots of the equation ax2+bx+c=0 and Sn=αn+βn then aSn+1+bSn+cSn−1=(n≥2)
n2 abc
a+b+c
(a+b+c)n
0
Sn+1=αn+1+βn+1=(α+β)(αn+βn)−αβ(an−1+βn−1)=−ba.Sn−ca.Sn−1