If α,β are the roots of the equation ax2+bx+c=0, then the value of determinant ∣∣ ∣ ∣∣1cos(α−β)cosαcos(α−β)1cosβcosαcosβ1∣∣ ∣ ∣∣ is equal to
0
We have ∣∣
∣
∣∣1cos(α−β)cosαcos(α−β)1cosβcosαcosβ1∣∣
∣
∣∣[Expanding along R1]
=(1−cos2β)+cos(α−β)[(cos α).(cos β)−cos(α−β)−cosα cosβ]=sin2β+cos(α−β)[2cos α cos β−cos(α−β)]=sin2β+cos(α−β)cos(α+β)−cos2α=sin2β+(cos2α−sin2β)−cos2α=0