wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If α,β are the roots of the equation ax2+bx+c=0, then the value of the determinant
∣ ∣ ∣1cos(βα)cosαcos(βα)1cosβcosαcosβ1∣ ∣ ∣ , is

A
sin(α+β)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
sinαsinβ
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
1+cos(α+β)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution

The correct option is D 0
=∣ ∣ ∣1cos(αβ)cosαcos(αβ)1cosβcosαcosβ1∣ ∣ ∣=∣ ∣1cosαcosβcosαcosαcosβ1cosβcosαcosβ1∣ ∣=∣ ∣ ∣1cos2αcosαcosβ+sinα.sinβcosα.cosβcosαcosαcosβsinαsinβcosα.cosβ1cos2βcosβcosαcosβcosαcosβ1∣ ∣ ∣=∣ ∣ ∣sin2αsinα.sinβcosαsinα.sinβsin2βcosβ001∣ ∣ ∣=sin2α.sin2βsin2α.sin2β=0OptionDiscorrectanswer.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Properties
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon