Then t ×loge(a−bx+cx2)=logea+(α+β)x−12(α2+β2)x2+13(α3+β3)x3−...to∞ Find t
Open in App
Solution
Since α and β are the roots of the equation ax2+bx+c=0 ∴α+β=−ba and αβ=ca ∴loga+(α+β)x−(α2+β22)x2+(α3+β33)x3−... =loga+(αx−(αx)22+(αx)33−...)+(βx−(βx)22+(βx)33−...) =loga+log(1+αx)+log(1+βx) =loga+log(1+(α+β)x+αβx2) =log(a−bx+cx2)