Since α and β are the roots of the equation ax2+bx+c=0, then,
α+β=−ba
And,
αβ=ca
If the roots of any equation is α+1β and β+1α, then,
(x−(α+1β))(x−(β+1α))=0
(x−α−1β)(x−β−1α)=0
(βx−αβ−1β)(αx−αβ−1α)=0
αβx2−αβ2x−βx−α2βx+α2β2+αβ−αx+αβ+1=0
αβx2−x(αβ2+β+α2β+α)+α2β2+2αβ+1=0
αβx2−x(β(αβ+1)+α(αβ+1))+α2β2+2αβ+1=0
αβx2−x((β+α)(αβ+1))+α2β2+2αβ+1=0
cax2−x((−ba)(ca+1))+(ca)2+2(ca)+1=0
cax2−x(−bca2−ba)+(ca)2+2(ca)+1=0
cax2−x(−bc−aba2)+c2a2+2(ca)+1=0
acx2+(bc+ab)x+c2+2ac+a2=0
Therefore, the required equation is acx2+(bc+ab)x+c2+2ac+a2=0.