Since α and β are the roots of the equation ax2+bx+c=0, then,
α+β=−ba
And,
αβ=ca
If the roots of any equation is α+k and β+k, then,
(x−(α+k))(x−(β+k))=0
(x−α−k)(x−β−k)=0
x2−βx−kx−αx+αβ+kα−kx+kβ+k2=0
x2−x(β+k+α+k)+αβ+kα+kβ+k2=0
x2−x(β+α+2k)+αβ+k(α+β)+k2=0
x2−x(−ba+2k)+ca+k(−ba)+k2=0
x2−x(−b+2aka)+ca+k(−ba)+k2=0
ax2−x(2ak−b)+c−kb+ak2=0
Therefore, the required equation isax2−x(2ak−b)+c−kb+ak2=0.