Since α and β are the roots of the equation ax2+bx+c=0, then,
α+β=−ba
And,
αβ=ca
If the roots of any equation is (α−β)2 and (α+β)2, then,
(x−(α−β)2)(x−(α+β)2)=0
(x−(α2+β2−2αβ))(x−(α2+β2+2αβ))=0
(x−α2−β2+2αβ)(x−α2−β2−2αβ)=0
((x−α2−β2)+2αβ)((x−α2−β2)−2αβ)=0
((x−α2−β2)2−(2αβ)2)=0
x2+α2+β2−2αx+2αβ−2xβ−4(αβ)2=0
x2+(α2+β2+2αβ)−2x(α+β)−4(αβ)2=0
x2+(α+β)2−2x(α+β)−4(αβ)2=0
x2+(−ba)2−2x(−ba)−4(ca)2=0
x2+b2a2+2bax−4c2a2=0
a2x2+2abx−4c2+b2=0
Therefore, the required equation is a2x2+2abx−4c2+b2=0.