The correct option is B loga+(α+β)x−(α2+β22)⋅x2+(α3+β33)x3
Since, α,β are roots of the equation ax2+bx+c=0, we have
∴α+β=−ba,αβ=ca
∴a−bx+cx2=a(1−bax+cax2)
=a{1+(α+β)x+αβx2}=a{(1+αx)(1+βx)}
Hence, log(a−bx+cx2)
=log{a(1+αx)(1+βx)}
=loga+log(1+αx)+log(1+βx)
=loga+(αx−(αx)22+(αx)33−.....)+(βx−(βx)22+(βx)33−....)
=loga+(α+β)x−(α2+β22)x2+(α3+β33)x3−....