The correct option is
D α1−α,ββ−1Given:
α,β are the roots of the equation
ax2+bx+c=0To find the roots of the equation ax2+bx(x+1)+c(x+1)2=0
Sol: According to the given criteria,
Sum of roots, α+β=−ba..........(i)
Product of roots, αβ=ca...............(ii)
Let α1,β1 be the roots of the new equation,
ax2+bx(x+1)+c(x+1)2=0
Divide throughtout by (x+1)2,
⟹a.x2(x+1)2+b.x(x+1)(x+1)2+c.(x+1)2(x+1)2=0⟹a.(xx+1)2+b.xx+1+c=0
Compare the above equation with ax2+bx+c=0
We get, α=xx+1
Hence the required roots will be, x1=α1−α,x2=ββ−1