Given equation is
k(x2−x)+x+5=0
⟹kx2+(1−k)x+5=0
Given that α,β are the roots of the above equation.
Therefore, sum of the roots is α+β=−(1−k)k .......(1)
and the product of the roots is αβ=5k ......(2)
Given that αβ+βα=45
⟹α2+β2αβ=45
⟹α2+β2=4αβ5
⟹(α+β)2−2αβ=4αβ5 .....(3)
substituting (1) and (2) in (3) we get
(k−1k)2−2(5k)=4(5k)5
⟹(k−1)2k2−10kk2=4kk2
⟹(k−1)2−10k=4k
⟹k2+1−2k−14k=
⟹k2−16k+1=
⟹k=16±√162−42
⟹k=16±√2522
⟹k=8±√63
Given that k1,k2 are the two values of k
Therefore, k1=8+√63,k2=8−√63
Hence, k1k2+k2k1=8+√638−√63+8−√638+√63
=(8+√63)2+(8−√63)2(8+√63)(8−√63)
=64+63+16√63+64+63−16√6364−63
=2541=254