If α,β are the roots of the equation x2+px+1=0;γ,δ the roots of the equation x2+px+1=0; then (α−γ)(α+δ)(β−γ)(β+δ)
q2−p2
Given: α,β are the roots of the equationx2+px+1=0Also,γ and δ are the roots of the equationx2+qx+1=0Then, the sum and the product of the roots of the given equation are as follows:α+β=−p1=−pαβ=11=1γ+δ=−q1=−qγδ=11=1Moreover, (γ+δ)2=γ2+δ2+2γδ⇒γ2+δ2=q2−2∴(α−γ)(α+δ)(β−γ)(β+δ)=(α−γ)(β−δ)(α+δ)(β+δ)=(αβ−αγ−βγ+γ2)(αβ+αδ+βδ+δ2)=[αβ−γ(α+β)+γ2](αβ+δ(α+β)+δ2]=(1−γ(−p)+γ2)(1+δ(−p)+δ2)=(1+γp+γ2)(1−δp+δ2)=1−pδ+δ2+pγ−p2γδ+pγδ2+γ2−pδγ2+γ2δ2=1−pδ+pγ+δ2−p2γδ+pγδ2+γ2−pδγ2+γ2δ2=1−p(δ−γ)−p2γδ+pγδ(δ−γ)+(γ2+δ2+1)=1−p2γδ+pγδ(δ−γ)−p(δ−γ)+(γ2+δ2)+1=1−p2(δ−γ)p(γδ−1)+q2−2+1=−p2+(δ−γ)p(1−l)+q2=q2−p2