If α ,β are the roots of the equation x2−px+q=0 and α > 0,β >0 , then the value of α14+β14 is (p+6√q+4q14√p+2√q)k , where k is equal to
x2−px+q=0∴α+β=p and αβ=q.
Now, (α14+β14)4=[(α14+β14)2]2=[α12+β12+(αβ)14]2
=[√α+β+2√αβ+2(αβ)14]2=[√p+ 2√q+2(q)14]2=p+6√q+4q14√p+2√q∴α14+β14=[p+6√q+4q14√p+2√q]14