wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If α,β are the roots of the equation x2px+q=0, find the value of α4+α2β2+β4.

Open in App
Solution

α and beta are the roots of the equestion, x2px+q=0
Here, a=1,b=p,c=q
αβ=ca=q1=q ----- ( 1 )
α2β2=q2 ----- ( 2 )
α+β=ba=(p)1=p ----- ( 3 )
(α+β)2=α2+β2+2αβ
(p)2=α2+β2+2(q) [ By using ( 1 ) and ( 3 ) ]
α2+β2=p22q ----- ( 4 )
(α+β)4=α4+β4+6α2β2+4αβ(α2+β2)
(p)4=α4+β4+6(q)2+4(q)(p22q)2 ------ [ By using ( 1 ), ( 2 ) and ( 4 ) ]
p4=α4+β4+6q2+4q(p44p2q+4q2)
p4=α4+β4+6q2+4qp416p2q2+16q3
α4+β4=p46q24qp4+16p2q216q3
α4+β4=p4(14q)+16q2(p2q)6q2 ----- ( 5 )
Now,
α4+α2β2+β4=(α4+β4)+α2β2
=p4(14q)+16q2(p2q)6q2+q2
α4+α2β2+β4=p4(14q)+16q2(p2q)5q2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Introduction
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon