wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If α,β are the roots of the equation x2px+q=0, find the values of
(1) α2(α2β1β)+β2(β2α1α)
(2) (αp)4+(βp)4

Open in App
Solution

Given, α,β are roots of the equation x2px+q=0

α+β=pandαβ=q

Part 1:

α2(α2ββ)+β2(β2αα)=α2(α2β2β)+β2(β2α2α)

=(α2β2)(α2ββ2α)=(α2β2)(α3β3)αβ

=(α+β)(αβ)2(α2+β2+αβ)αβ

=(α+β)[(α+β)24αβ][(α+β)2αβ]αβ

=p(p24q)(p2q)q


Part 2:

1(αp)4+1(βp)4=1β4+1α4=α4+β4α4β4

=(α2+β2)22α2β2α4β4==((α+β)22αβ)22α2β2α4β4

=(p22q)22q2q4=p24p2q+2q2q4

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Algebra of Complex Numbers
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon