If α,βare the roots of the equation x2-px+q=0,then the values of (α+β)x-(α2+β2)x2/2+(α3+β3)x3/3+….is
Finding the value of (α+β)x-(α2+β2)x2/2+(α3+β3)x3/3+…. :
Given that α,βare the roots of the equation x2-px+q=0,
Sum of roots,(α+β)=p
Product of roots, αβ=q
(α+β)x–(α2+β2)x2/2+(α3+β3)x3/3+…
=[αx-(1/2)(αx)2+..]+[βx-(1/2)(βx)2+(1/3)(βx)3..]=log(1-αx)+log(1-βx)=log[1-(α+β)x+αβx2]=log[1-px+qx2]
Hence, the value of (α+β)x-(α2+β2)x2/2+(α3+β3)x3/3+…. is log[1-px+qx2].